
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Using Directed Graphs to Describe Entity Dependency in Stable
Distributed Persistent Stores

Rasool Jalili and Frans A. Henskens

Basser Department of Computer Science
The University of Sydney, N.S.W., 2006, Australia

{ rasoo1,frans) @cs.su.oz.au

Abstract

In a persistent object store, the acts of modifying data
and reading modified data result in the creation of
dependencies between the modifying process and the data.
Dependencies may be represented using sets, and over time
these may grow to encompass many objects and
processes. Checkpoint and roll-back operations must
propagate to all elements in such a set. This paper
presents a new notation for representing dependencies, and
shows that differentiating between the dependencies created
by modifying data and reading modified data reduces the
extent of propagation of checkpoint and roll-back
operations.

Keywords : Stability, Dependency, Persistent
Systems, Fault-tolerant Systems, Checkpoint, Roll-back.

1 Introduction
Persistent systems [11 provide uniform mechanisms for

the manipulation of short-term and long-term data.
Achieving such uniformity requires an abstract store often
called persistent store [4]. According to [2, 51 such a store
should appear to be of unbounded size and to be failure-
free. The failure-free property of such stores is often
referred to as store stability.

A Distributed Persistent Store (DPS) provides access to
a shared network-wide persistent store for users of
computers connected to a network. The secondary or
backing storage, which typically occurs on disk, may be
centralised (eg Casper [20]) or distributed across the
networked nodes (eg Monads DSM [SI). Implementation
of a DPS introduces issues not associated with single node
persistent stores. Of our concern in this paper is the
appearance of being failure-free (stability). Stability of a
DPS can be achieved by stepping the store through a
sequence of global consistent states [lo, 131, requiring the
implementation of distributed atomic updates.

From time to time computer systems unexpectedly
fail, due either to hardware or software faults or loss of
power. Such failures may result in loss of the contents of

volatile memory (RAM), while the contents of the non-
volatile memory typically remain unchanged. As
persistent stores provide uniform management of objects,
the transfer of data between volatile and non-volatile
memory is transparent to the user. At any instant the
state of the store is represented by the combination of the
contents of the volatile and non-volatile memories. Since
the contents of volatile memory are typically lost after
system failure, a stable persistent store must be able to
revert after failure to some consistent state described in
non-volatile memory.

Techniques which make such reversion possible for
persistent systems are typically based on regularly
flushing the volatile system state to non-volatile storage
(checkpointing or stabilising) and reverting to the most
recent checkpoint state after failure (roll-back) [lo]. For a
DPS to be stable there must be at least one global
consistent and non-volatile recorded state at any instant. It
is desirable that this recorded state is close to the state at
the time of failure, thus minimising the loss of
modifications to the store in the event of roll-back.

Shadow paging has been used as a mechanism for
implementing a roll-back recovery technique in single-
node persistent stores (eg. [4, 81). In the interval between
checkpoint states two versions are maintained for all
modified virtual pages; the stable or shadow version, and
the modified or current version. During a checkpoint
operation, all pages modified since the last checkpoint are
flushed to backup store creating new shadow versions, and
the disk blocks occupied by the previous shadow versions
are de-allocated [181. A checkpoint operation is assumed
to be atomic and may be initiated as a periodic action, as
part of orderly system shutdown, or as part of some higher
level mechanism such as transaction commit.

During recovery from a failure, or on system restart,
the system commences operation from the most recent
stable state. In the case of recovery from a system failure,
this is equivalent to a roll-back operation and results in
the loss of modifications achieved since the last
checkpoint. Reducing this loss may be achieved by
increasing the frequency of checkpoints; this degrades

1060-3425/95 $4.00 0 1995 IEEE
665

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

system performance because processing must be suspended
for parts of the store undergoing a checkpoint. This
degradation is particularly relevant if the entire store is
stabilised as a single operation. In an attempt to reduce
the impact of checkpoint operations on store useability,
recent stability schemes based on shadow paging
checkpoint parts of the store separately from each other
vol.

This approach to stability requires consideration of the
physical and logical dependencies which may be created in
the interval between checkpoints [20]. Such dependencies
may require parts of the store to be checkpointed together.
While the roll-back operation has not been explicitly
included in this and some subsequent discussion, its
inclusion may be implied by the reader since checkpoint
and roll-back operations are effectively inverses of each
other.

Shadow paging has been used to provide stability in
DPSs (eg. Casper [13] and Monads-DSM [8, lo]). In
these systems consistency of the store is maintained in the
case of both node and network failure; this is not as
straightforward as for single-node stores because of the
possibility that dependencies may involve multiple nodes.

In the following discussion we refer to a virtual page as
clean if it is has not been modified since it was last
checkpointed, otherwise it is called dirty. Objects are
assumed to be paged entities equivalent to, for instance,
files or programs in conventional systems. An object
may also be referred to as clean or dirty; this is with
respect to the status of the page currently being accessed.
Thus one process may see an object as clean while
simultaneously another process may see the same object
as dirty. The term entity refers to an object or a process
in this discussion.

Processes in distributed systems may communicate
through passing messages or accessing a global shared
memory [16]. In the message passing model of process
communication, the state of a process PI, after receiving a
message from another process P2, depends on the state of
P2. Likewise, in the shared memory model of process
communication, the state of a process P1 accessing a dirty
page modified by another process P2, depends on the state
of P2. In this paper we concentrate on dependencies in
shared memory systems, investigating the application of
entity-based stabilisation using directed graphs to describe
dependencies between entities. We show that the use of
directed graphs allows separate description of checkpoint
and roll-back dependencies, thus improving store
efficiency. Further aspects of entity dependency including
two phase checkpoint and roll-back are discussed.

2 Entity dependency in shared memory
environments

Access by multiple processes to data objects typically
results in inter-dependence between the processes and the
objects. For example, when a process PI accesses a dirty
data object D1 previously modified by an other process P2,
its subsequent behaviour may be affected according to the
modifications achieved by P2. The states of PI , D1, and
P2 become inter-dependent as a result of the access
performed by PI. During normal operation on the store,
sets of such dependent entities may be created. Such sets
of dependent entities have been termed associations [20].
It is important for the logical integrity of the store that
such dependent entities are checkpointed together.
Checkpointing an entity belonging to an association
necessitates the checkpointing of all entities in the
association. The roll-back of an entity, likewise,
necessitates the roll-back of all other entities belonging to
the same association. Reducing the size of associations1
improves store performance by curbing the propagation of
checkpoint and roll-back operations from one entity to
other dependent entities.

2.1 Implications of dependencies in single-node
persistent stores

Dependency of objects in conventional systems is less
critical than that in persistent systems due to the
separation between management of main memory (RAM)
and backup memory (file store). A process in a
conventional system explicitly writes all its permanent
modifications from memory back to the disk file store.
This, if accompanied by consideration of shared objects,
can produce a consistent stable state for the process.
Whenever a user closes his files, he ensures that the data
in the files is stable. In the case of a server failure which
results in file corruption, the user may revert to the most
recent backup taken by the system operator. After any
failure users restart their processes, and with the exception
of higher level software such as data base management
systems the integrity of data at the object level is not
critical to correct store operation.

In persistent systems, however, transparent transfer of
data between volatile and non-volatile storage and also
stability of the store is the responsibility of the system
memory manager. Users in persistent systems view the
store as stable and therefore expect all their update
operations to remain durable. Such a view is achievable

lSuch reduction must be sensible in terms of cost. Associations
may be reduced to unit size by checkpointing after every update,
however this would be as detrimental to system performance as
allowing associations to grow too large.

666

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

667

to some extent through frequent checkpoints, as proposed
for the Napier and Monads-PC persistent stores [5 , 181.

Napier is a single-user persistent system constructed
above a Unix-based computer. It involves an abstract
machine (PAM) which provides the abstraction of the
persistent store and also a programming language (Napier-
88). Stability of the persistent store is provided through
regular checkpointing and the implementation of shadow
paging between subsequent checkpoints [4]. In terms of
dependency, all entities in the store are assumed to become
dependent on each other during operation, and therefore the
whole store is stabilised atomically. In the case of any
failure the whole store is rolled back to the last checkpoint
state [4].

The Monads-PC is a purpose-built computer which
supports persistence at the architectural level. The non-
volatile backup for the persistent store consists of one or
more volumes (disks), which form the granularity of
stability [lo]. Volumes are stabilised or rolled back
without regard to the entities stored on them. Similarly
to Napier, in uni-volume Monads-PC computers all
entities are assumed to be dependent on each other and
therefore no dependency information is maintained.
However, in the case of multi-volume Monads computers
any reference from an entity in one volume to an entity
resident on another volume may result in dependency
between the volumes. Thus, to date, dependencies in the
Monads system have been maintained at the volume level.

2.2 Implications of dependencies in distributed
persistent stores

A considerable body of research [3, 12, 14, 15, 191 has
been carried out aimed at building recoverable distributed
systems because of their higher probability of failure
occurrence. The failure of a node or of the communication
link (these failures result in network partitions) in
distributed systems causes only a part of the system to be
unavailable. To allow still-alive portions of the store to
continue operation correctly after such a failure, their state
should be made consistent with the recovery state of the
failed (and temporarily inaccessible) portion.

Constructing a global consistent state in distributed
systems is not as straightforward as for single-node
systems. This is because of the logical dependencies
described above, and the fact that such dependencies may
traverse nodes. The difficulty is achieving atomicity of
checkpoint for multiple nodes and in a situation where
failure of a node or the inter-connecting medium can occur
at any time. In the following paragraphs we review the
implications of dependency for Casper and Monads-DSM,
these being examples of stores implementing different
distributed store control disciplines.

Casper employs the centralised server model to provide
the abstraction of a DPS. It considers the world as a set
of clients served by a central server which provides access
to shared objects and maintains the stability and coherency
of the paged persistent store. Checkpoint operations occur
at the client level and may be cascaded to other clients.
Clients which have seen the same dirty data are deemed to
be dependent on each other and are grouped into dynamic
sets called associations [20]. Each association is
accompanied by a set of pages which have been modified
by at least one member of the association since the last
checkpoint. A page may belong to at most one such set.
Whenever a client accesses a modified page, the
association to which the client belongs is merged with the
association defining other clients dependent on the page.
If a client modifies a clean page, the page is added to the
set of pages accompanying the association to which the
client belongs.

When any client belonging to an association initiates a
stabilise operation, all clients in the association are forced
to stabilise. Similarly, if any client in an association
rolls back to its last stable state, all clients in the
association must roll back. These requirements result in
consistency of the persistent store.

The Monads-DSM provides a DPS using a distributed
server model constructed over a network of Monads-PC
computers. As described in section 2.1, the granularity of
stability in Monads-PC computers is the volume. In a
multi-volume Monads-PC or in the Monads-DSM, it is
possible to have cross references between volumes. In
order to ensure consistency, volumes containing cross
references must be stabilised together. A dependency
graph maintained at each node is used to describe
dependencies between volumes. A two-phase commit
protocol is used to perform a stabilise operation in which
a volume and all its dependent volumes (according to the
dependency graph) are stabilised together [lo].

The problems with the Monads-DSM approach are not
only the large granularity of stability (the volume which
may contain many objects) but also the determination of
dependency relationships between volumes regardless of
the kind of access (read or write). Using volumes as the
granularity of stability leads to the incidence of stabilise
operations on non-essential data objects in a volume
together with other objects which must be stabilised for
consistency reasons. As we shall show, the lack of
consideration of access type in defining the dependency of
volumes results in larger dependency graphs than
necessary. This larger than necessary dependency graph
makes the stabilise operation in Monads-DSM inefficient.
The issue of maintaining dependencies regardless of access
type is also applicable in the case of Casper.

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

3 More efficient representation of
dependencies

As mentioned above, the current methods of managing
dependencies in DPSs consider dependency as a bilateral
(undirected) relationship, and therefore reading modified
data has the same effect as modifying data in terms of
dependency. We show that different dependencies are
created by modifying data and by accessing previously
modified data, and that read operations create unilateral (as
opposed to bilateral) dependencies. Because read
operations typically outnumber write operations [7], we
believe that the cost of cascaded operations will decrease
dramatically by use of the proposed unilateral
dependencies.

Reading from objects and writing to them are the two
major operations which result in dependency. Other non-
frequent operations such as create, open, close, and remove
objects are normally reduced to write operations on the
red-tape areas of objects or the system-related data. It is
assumed that objects are paged, and that the unit of data
transfer between main memory and secondary storage is
the virtual page. We describe the management of
dependency in terms of process' access to virtual pages
comprising objects.

Without the ability to separately stabilise and roll-back
entities (such as processes and objects) rather than
collections of entities (such as volumes), the incidence of
dependency between such entities may result in cascading
of these operations to all entities. Therefore, we reduce
the granularity of stability to the individual entity.

A process may perform one of the following operations
on a virtual Dage. r 0 -

It may read data from an unmodified page, which
results in no dependency between the reading process
and the object containing the page. This is because
the data is stable at the time of the read operation,
resulting in no change in the stability of the reading
process.
It may read a modified page of an object, which
results in a unilateral dependency between the reading
process and the object containing the page (ie the
object is not dependent on the process). This is
because the data was unstable at the time of the read
operation, and the unstable data caused the process to
become unstable (if it was not already).
It may modify a page of an object, which results in a
mutual dependency of the modifying process and the
modified object. This is because the process caused
the (possibly stable) data to become unstable.

Directed Dependency Graphs (DDGs). Entities form
vertices and dependencies between them form edges of
DDGs. Each edge either describes a dependency between a
process and an object or vice versa. Objects (processes)
may depend on each other only through a vertex
representing a process (object). We use + in order to
specify the causal dependency between two entities. By
E1+E2, we mean that El depends (directly or indirectly)
on E2. Such relation (+) is transitive, but not symmetric
ie if El depends on E2 (E 1 j E 2) then E2 does not
necessarily depend on El. However, the right hand side of
a + relation may depend on the left hand side for one of
the following reasons:

through transitivity (a cycle in the directed dependency
graph), or
when the left hand side is a process which writes to an
object.

In the case of a write operation which leads to a pair of
dependencies (with opposite directions), instead of using
two unilateral edges (El+E2 and E2+E1), we use the
notation EleE2.

DDGs are constructed gradually as processes access
objects. Initially the dependency graph for an entity
contains the entity itself as the root and the only vertex.
In terms of the possible operations performed by a process
on an object, the graph grows according to the following
criteria.

When a process PI reads a modified page of an object
0 1 , the P1 + 0 1 edge is inserted into the graph.
When a process PI modifies a page of the object 0 1 ,
either the PI t) 01 or 01 t) PI edge is inserted into
the graph.
When a process in one graph reads a modified page or
modifies a page of an object in another graph, the two
graphs are merged to create a single larger graph.
A graph shrinks when a collection of dependent
entities is stabilised or revert to their last stable state.

At any given time each entity belongs to one and only
one dependency graph. To find the entities dependent on
an entity, it is sufficient to find the location of the entity
in its graph and then traverse the directed graph from the
entity. Dependencies between local and remote entities are
also managed by DDGs. Such dependencies result in
distributed DDGs encompassing entities resident on
multiple nodes.

4 Implication of DDGs on checkpoint
and roll-back operations

Dependency graphs are used to identify entities to
which a stabilise or roll-back operation should cascade.

Directed graphs may be used to represent directed
dependencies between entities. We refer to such graphs as

However, the path traversed for cascading roll-back may be
different from that for cascading checkpoint operations.

668

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

We use a single dependency graph and then apply separate
stabilise and roll-back algorithms to achieve the required
operation, two more symbols are introduced which specify
the dependency between two entities in terms of
stabilisation or roll-back. By El 4 E2, we mean that
when El stabilises, E2 also should be stabilised and
therefore El depends on E2 in terms of stability.
Likewise, El 5 E2 means that El depends on E2 in
terms of roll-back. Figure 1 shows the relationship
between the edges forming a dependency graph and their
meanings in checkpoint and roll-back graphs. By
convention, we are able to use a single dependency graph
to indicate separate stability and roll-back relationships.

t) 2- and 2, -5 and P
Figure 1 The relationship between Dependency Graph,

Stabilising Graph, and Roll-back Graph.

To clarify the distinction between the implication of
directed dependency on stabilise and roll-back operations,
consider a scenario in which a process PI reads a modified
page of the object 01. Until commencement of the next
stabilise operation for process PI, all subsequent actions
taken by P1 are unstable because they may depend on the
modified 0 1 data. During this period of instability, either
of 01 or P1 may be alternately stabilised or rolled back.
1) If 01 is checkpointed, P1 is not required to be

checkpointed. The worst case is that after 01 is
checkpointed, P1 rolls back to its last stable state.
This results in no inconsistency and P1 may read the
stable data from 0 1 again without problems.

2) If P1 is checkpointed, 0 1 must also be checkpointed.
Otherwise, in the case of the roll-back of 0 1 there is
an inconsistent state in which orphan (no longer
existent) data has been read by P1 and which may have
affected its subsequent behaviour.

3) If 01 rolls back, P1 has to roll-back because the roll-
back results in PI having read orphan data.

4) If P1 rolls back, 01 does not have to roll-back because
PI, after reversion, can simply redo the read operation.

4.1 Stability and roll-back of dependent entities
Checkpointing (rolling-back) an entity requires the

atomic checkpoint (roll-back) of the entity itself, all of its
dependents, and the system-related data structures. The
effect of using DDGs on the propagation of checkpoint

and roll-back is demonstrated in figure 2. Using the
method of associations and dependency graphs which have
been used in Casper and Monads-DSM, all entities would
be checkpointed (rolled back) as a result of the checkpoint
(roll-back) of any entity in the graph. Figure 2(a) shows a
DDG formed according to the cross-access of three
processes and four objects according to the rules described
in section 3. Shaded vertices depict entities with unstable
states and non-shaded vertices depict entities with stable
states. Figure 2(b) shows the effect of stabilising PI; this
operation propagates only to 0 1 and 02. Figure 2(c)
shows the effect of rolling back P3 which only propagates
to 0 4 .

pJp
@ 04 U2

(b) (C)

Figure 2 a) A sample directed dependency graph. b)
The effect of checkpointing PI. c) The effect of the roll-

back of P3.

@

5 Achievement of stability using DDGs
The application of DDGs to provide a stable DPS

requires the following facilities:
1) The system kernel must support the detection of

operations which create inter-entity dependencies.
2) Dependency graphs must be independent in terms of

checkpoint and roll-back operations. Checkpoint
(roll-back) of an entity belonging to a DDG must not
lead to checkpoint (roll-back) in any other DDG.

3) Checkpoint operations must be atomic, and must
ensure the existence of at least one global consistent
stable state. For a distributed store, this can be
achieved through the application of a two-phase
protocol.

5.1 Kernel support for dependency detection
As implied in section 3, processes cannot become

directly dependent on other processes. Objects also cannot
be directly dependent on other objects.

669

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

To support the construction of DDGs the operating
system kernel for each node must [I l l maintain
information describing:
(1) Which virtual pages (resident in main memory or not)

have been modified since the objects containing the
pages were checkpointed.

(2) Which modified virtual pages have been accessed in
this time-slice by the currently executing process.

(3) Which virtual pages have been modified in this time-
slice by the currently executing process.

Detection of whether a non-resident page is modified
may be achieved by recording which virtual pages have
been modified since the last checkpoint. When handling a
page fault, the kernel checks if the page (VI) has been
previously modified, and if so it is mapped into main
memory as modifiedhead-only and a dependency is
recorded. Otherwise, it is mapped in as read-only. If the
executing process attempts to write on the page an
exception condition is created; the kernel grants write
access after modifying the corresponding DDG.

In a multi-tasking system a normal process-switch may
subsequently result in the activation of another process
P2, which may then access VI . This access must be
detected by the stability mechanism because it may cause
modification of the dependency graph information. It is
not sufficient to rely on access fault management to detect
the access, however, because the page is currently in main
memory in writeable form; in short the access would not
cause an access fault. To detect such accesses and thus
permit dependency information to be updated, the kernel
(or the architecture) must support identification of
modified memory pages inherited by the next process.
TLB-based architectures support this facility at the
hardware level [20]. Architectures such as Monads [17],
however, which do not provide this facility, must emulate
it at the kernel level to support the DDG scheme.

5.2 Critical entities in DDGs
Each normal entity belongs to one and only one DDG.

Thus DDGs are autonomous in terms of stabilisation ie
checkpointing the entities belonging to a DDG does not
result in checkpointing of entities belonging to another
DDG. However, there are special system entities which
logically belong to more than one DDG. We discuss such
entities in this section.

The kernel in each node can be considered as an object
including data structures used in the node management.
Each kernel function typically results in modifications to
these data structures, making the current user process
dependent on the kernel and vice versa. This recursively
results in dependency between all entities and the kernels.

For simplicity we will refer to each node kernel as a
single entity which belongs to all DDGs on that node.

Due to the lack of a one-to-one correspondence between
virtual address space and physical disks address space2,
object identifiers must be mapped into their physical
addresses. We assume that a mapping table exists per disk
to perform such mapping for all objects on the disk. We
refer to this mapping table as the disk directory and
allocate a special object with well-known identifier per
disk (root object) which contains all the information
required for management of the disk (including the disk
directory and disk free-list). Each access to objects located
on a disk requires access to and possibly modification of
the root object. For example, any disk page allocation
requires the modification of the disk free-list.

If shadow paging is the method of stability, each
attempt to modify a 'clean' page results in dependency
between the object containing the page and the root
object. Thus each modified object necessarily depends on
the root object of its storage disk and vice versa.
Therefore, each network-wide DDG may contain one or
more kernel entities and also one or more disk root
objects.

Disk root objects and kernel entities are critical
entities; their inclusion in DDGs can act as a focus to
cause cascade of stabilise operations through whole the
distributed store if they are considered similarly to the
other normal entities. Accordingly we do not consider
critical entities as normal entities and do not include them
in DDGs. They are considered as permanent entities of
each dependency graph and are restricted in terms of the
propagation of operations through them; the dependencies
between them and DDGs are referred to as implicit
dependencies. In fact, critical entities act as obstacles to
the propagation of checkpoint and roll-back operations.

Figure 3(a) shows the system state in a node with three
dependency graphs spread over two disks D1 and D2. All
dependency graphs on the node depend on the kernel entity
and all dependency graphs with entities belonging to a
disk depend on the disk root object. We refer to such
dependencies as strong dependencies. DDGs on a node
strongly depend on the node critical entities. Figure 3(b)
shows individual views of each dependency graph in terms
of critical entities. The root object is assumed to have a
virtual instance per dependency graph, helping us to
improve our stabilisation protocol. We must however,
somehow stabilise the root object to guarantee the

2Note that even in computer systems which provide single-level
stores (virtual stores as long as their disk address space), mapping is
typically required. This is due to the gradual allocation of disk blocks
to virtual pages.

670

them are checkpointed. Otherwise, for instance, the
occurrence of a disk crash while a checkpoint is in
progress may result in an inconsistent system state.

To provide atomicity, checkpoint of a DDG is achieved
through a two phase protocol. The most important issue
in such a protocol is the possibility of reversion to the
most recent stable state for each participant which has
failed to achieve its checkpoint or become inaccessible due
to communication failure. As described in the next
section, it is important that cycles in a dependency graph
do not cause dead-locks during checkpoint operations. A
tagging pre-phase is used to avoid such dead-locks,
followed by a two phase checkpoint. The protocol
guarantees atomicity of operations with the possibility of
roll-back operation as soon as a participating node detects
the failure (inaccessibility) of another node involved in the
operation.

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

671

Figure 3 (a) Dependency of DDGs on critical entities.
(b) Critical entities act as obstacles in operation

propagation.

5.3 Achievement of atomic checkpoint operation
Checkpoint operations advance the stable system state

and release disk blocks occupied by the previous stable
state. For dependent entities distributed over multiple
nodes it is crucial, for the sake of consistency, that the
effects of a checkpoint operation appear to be atomic.
This means that either all dependent entities are
checkpointed resulting in a new stable state, or none of

Cyclic dependency graphs: As mentioned above, the
root object in each disk depends on all modified objects
resident on the disk and vice versa. Checkpoint of each
modified object necessitates the stability of its
corresponding root object. Furthermore checkpointing an
object requires modification to the root object. If the root
object was checkpointed when further dependent entities
belonging to the same disk existed in the current
dependency graph, the root object would have to be
checkpointed more than once during the single atomic
operation. Multiple checkpoints of the root object in a
single atomic operation make it impossible to revert to
the most recent state if failures occur during the
checkpoint. This is because of the disappearance of the
stable states older than the last one during the achievement
of the disk root object checkpoint. To prevent such
inconsistencies and also to improve the efficiency of
checkpoint operation, all entities on a disk belonging to
the same dependency graph form a group. Members of
such a group are checkpointed together followed by a
single checkpoint of their corresponding disk root object.
The need for a tagging pre-phase is demonstrated by the
following example which assumes no tagging pre-phase,
and nodes each supporting a single disk.

Consider the checkpoint of 0 1 1 in a dependency graph
distributed over nodes N I , N2, and N3 in figure 4.
Starting from 0 1 1 and checkpointing entities during
traversal of the graph, N2 becomes aware that 0 2 1 belongs
to the same graph as 011 when it is informed to
checkpoint its part of the graph. N2 checkpoints 0 2 1 as
well as its corresponding disk root object (note that
according to the current knowledge of N2, no other entity
residing on the same disk as 0 2 1 belongs to the same
dependency graph), and sends a message to N3 requesting
the checkpoint of P31. While N2 waits for the completion

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

of the checkpoint in N3, it will receive a request from N3
requesting the checkpoint of 0 2 2 . As discussed above, N2
can not checkpoint 0 2 2 while the checkpoint of 0 2 1 has
not completed or aborted. N3 cannot respond to the initial
request from N2 until it receives a response to its request
of N2. This scenario results in either roll-back (due to the
non-response between N2 and N3) or in a deadlock
situation.

The tagging pre-phase prevents such a deadlock
situation. During the pre-phase, the DDG is traversed and
an identical tag is attached to all entities belonging to the
same DDG. This allows the checkpoint algorithm to
properly group all entities belonging to the same disk.

Figure 4 Entities on the same disk which indirectly
depend on each other.

Two Phase Checkpoint Using DDGs: In order to
provide atomicity of a network-wide checkpoint, it is
achieved in two phases, flush and commit. The flush
phase is initiated after completion of the tag pre-phase in
which the entire DDG is traversed and the same
Dependency Graph Number (DGN)3 is associated with
each entity. All page flushes and root object
modifications are achieved in this phase but remain non-
completed (by advancing to the new state of the disk root
objects) until commencement of the commit phase. The
first phase is started by the checkpoint initiator node with
results as described below.

First, local entities with the same DGN are classified
in groups per disk according to the pre-phase tags. Then
entity flushing is achieved for all such groups. For each
group, this includes flushing of all group members
followed by flushing of the disk root object. Flushing of
an individual entity consists of writing all its modified
pages currently held in main memory back to disk and
modifying the disk root object such that the object appears
clean. Flushing of the disk root object must also include
declaration of itself as clean. During the period after
flushing the root object and before the commitment of the
checkpoint, the root object has an uncertain state and any

3We also refer to DGN as checkpoint-id.

access which results in the modification of the root object
is prohibited.

In parallel a 'flush' message is sent to each node which
stores entities belonging to the current DDG requesting
them to perform the flush phase for all entities with the
same DGN (this occurs recursively to encompass all
remote entities stored on remote nodes). The initiator
(coordinator) then waits for participants' replies.

On receipt of the 'flush' message, each participant
achieves the flushing phase in the same way as the
coordinator. The node may propagate the operation to
other nodes. This may result in the receipt of multiple
checkpoint requests for the same DDG by a node, due to
the possible existence of cycles in the graph. In such
cases only the first message is processed and later
messages are acknowledged. If a participant propagates its
received checkpoint request to other nodes, it must wait
for their responses before itself appropriately replying to
the checkpoint request.

Upon receipt of a completion message, each node
checks if all successors have replied and if so, it either
0 communicates the completion of its 'flush' to its

predecessor if it is not the coordinator, or
initiates the commit phase if it is the coordinator.

If a node detects the inaccessibility of its successor in the
checkpoint propagation graph (for instance through time-
out or guardian techniques), it autonomously initiates an
abort of the checkpoint, commencing the second phase.
This is discussed in more detail in section 6.

In the case of completion of the flush phase, the
coordinator decides to commit and propagates this decision
through the graph. The commit phase is also achieved per
disk, and achieves atomic transfer from the previous stable
state to the current flushed state. This is achieved by
atomically updating the pointers to each disk root object
so that these pointers now reference the new root objects
created by the checkpoint. It is crucial to somehow
guarantee the existence of at least one stable state despite
the possible occurrence of failures during the transition
from the previous stable state to the next one.

The operation which completes a disk checkpoint is
similar to the commit operation for database updates. We
use Challis' algorithm [6] to achieve the atomic update of
the pointer to each disk root object. Two pointers are
allocated to each disk to represent two subsequent stable
states of the system. If a failure (crash) occurs while a
pointer is being stored as the final stage of a checkpoint
operation then the pointer is potentially incorrect. After
recovery from the crash, the system is able to identify the
consistent pointer and therefore the most recent stable
state of the disk.

We add to Challis' algorithm in order to fulfil the
requirements of two phase checkpoint atomicity. We

672

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

assume that the store is spread over a multi-node system
and each node is capable of mounting more than one disk.
The new algorithm detects:
0 the most up-to-date correct root object pointer for each

disk,
0 failure of a node after achieving the first phase of a

checkpoint operation for one of its local disks, and
failure of a node after achieving the second phase of a
checkpoint operation for one of its local disks and
before all local disks containing entities in the
dependency graph have completed their second phase.

A message protocol allows a recovering node to decide
which disk root object pointer to use if an incomplete
checkpoint is detected during failure recovery. According
to this protocol the node either completes the second
phase of the incomplete checkpoint or performs a roll-
back operation.

6 Implication of using DDGs on
checkpoint abort

As soon as a node detects inaccessibility of its
successor in the checkpoint propagation graph, it assumes
the receipt of an abort or roll-back request through its edge
to the inaccessible node. Whereas systems using
associations to describe dependent entities require such an
abort to be propagated to all entities in the association,
systems using DDGs allow some flushed entities to
commit their checkpoint while other entities revert to
their previous stable states. As shown in the following
example, the use of DDGs thus results in less loss of data
modifications after failure.

Consider the scenario depicted in figure 5 . The process
P11 on node NI initiated a checkpoint which propagated to
01 1, and hence to N2 and through N2, to N3 and N4.
Suppose that N2 detects inaccessibility of N3 and therefore
acts as if it has received an abort request through the edge
between P21 and 0 3 1 . Although node N4 remains
accessible, 0 4 1 and P41 are unaffected by the abort because
of the nature of the directed edge linking P21 and 041.
The entities resident on node N4 can thus continue to
commit their checkpoint. Because of the nature of the
edges linking the involved entities resident on nodes N I
and N2, however, the roll-back operation cascades to those
entities.

Conclusion
In this paper we demonstrated shortcomings of the

current techniques used to describe dependency
relationships between processes and objects i n a
distributed persistent store. In particular we showed that
the cascade effect of stabilise operations resulted in larger
stabilise operations than absolutely necessary. We also
showed that the cascade effect of roll-back operations could
result in unnecessary loss of store modification.

We presented an alternate method for describing entity
inter-relationships. This alternate representation uses
directed graphs. The directed edges in such graphs allows
different interpretation of the graph during stabilise and
roll-back operations. We showed that, because of the
extra flexibility afforded by the DDG representation, it is
possible to significantly reduce the cascade effects of store
stability operations. In particular, checkpoint operations
are improved in terms of efficiency, and the extent of roll-
back operations is reduced. This is a significant
achievement, because only those modifications which it is
absolutely necessary to reverse are lost as a result of roll-
back operations.

The techniques described in this paper have been
evaluated by simulation and shown to result in significant
stability-related performance improvements. Subsequently
a new version of the Monads architecture which
incorporates hardware support for the construction of
directed dependency graphs has been designed and is
currently being implemented [9].

Acknowledgment
This research has been supported by the Ministry of

Culture and Higher Educations, the Government of the I.
R. of Iran.

673

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

[111 Jalili, R., Henskens, F. A., Koch, D. and Rosenberg, J.
“Operating System Support for Object Dependencies in
Persistent Object Stores”, Proceedings of the Workshop

Atkinson, M. P., Bailey, P., Chisholm, K. J., on Object-oriented Real-time Dependable Systems
Cockshott, W. P. and Morrison, R. “An Approach to (WORDS’94), to appear, IEEE Computer Society Press,
Persistent Programming”, The Computer Journal, 26(4), California, 1994.

References

pp. 360-365, 1983.

Atkinson, M. P., Chisholm, K. J. and Cockshott, W. P.
“CMS - A Chunk Management System”, Sof tware
Practice and Experience, 13(3), pp. 259-272, 1983.

Bhargava, B. and Lian, S. “Independent Checkpointing
and Concurrent Rollback for Recovery in Distributed
Systems- An Optimistic Approach’, Proceedings of the
7th Symposium on Reliable Distributed Systems,
Columbus, OH, pp. 3-12, 1988.

Brown, A. L. “Persistent Object Stores”, Universities of
St. Andrews and Glasgow, Persistent Programming
Report 71, 1989.

Brown, A. L., Dearle, A., Momson, R., Munro, D. and
Rosenberg, J. “A Layered Persistent Architecture for
Napier88”, Proceedings of the International Workshop
on Computer Architectures to Support Security and
Persistence of Information, ed J. Rosenberg and J. L.
Keedy, Springer-Verlag and British Computer Society,
pp. 155-172, 1990.

Challis, M. F. “Database Consistency and Integrity in a
Multi-user Environment”, Databases: Improving
Useability and Responsivcness, Academic Press, pp.
245-270, 1978.

Cvetanovic, Z. and Bhandarkar, D. “Characterization of
Alpha AXP Performance Using TP and Spec Workloads”,
IEEE Computer Architecture News, 22(2), pp. 60-70,
1994.

Henskens, F. A. “A Capability-based Persistent
Distributed Shared Memory”, Basser Department of
Computer Science, The University of Sydney, N.S.W.,
Australia, Technical Report 462, ISBN 0 86758 668 0,
1991.

Henskens, F. A., Koch, D. M., Jalili, R. and Rosenberg,
J. “Hardware Support for Stability in a Persistent
Architecture”, Proceedings of the 6th International
Workshop on Persistent Object Stores, to appear,
France, 1994.

[12] Johnson, D. B. and Zwaenepoel, W. “Recovery in
Distributed Systems Using Optimistic Message
Logging and Checkpointing”, Proceedings of the
7th Symposium on Principles of Distributed
Computing, ACM, pp. 171-181, 1988.

[I31 Koch, B., Schunke, T., Dearle, A., Vaughan, F., Marlin,
C., Fazakerley, R. and Barter, C. “Cache Coherence and
Storage Management in a Persistent Object System”,
Proceedings of the 4th International Workshop on
Persistent Object Systems, pp. 99-109, 1990.

[14] Lin, L. and Ahamad, M. “Checkpointing and
Rollback-Recovery in Distributed Object Based
Systems”, Proceedings of the 20th International
Symposium on fault Tolerant Computing, IEEE
Computer Society, pp. 97- 104, 1990.

[15] Lowry, A., Russell, J. R. and Goldberg, A. P.
“Optimistic Failure Recovery for Very Large Networks”,
Proceedings of the 10th Symposium on Reliability in
Distributed Software and Database Systems, IEEE, pp.
66-75, 1991.

[I61 Nitzberg, B. and Lo, V. “Distributed Shared
Memory: A Survey of Issues and Algorithms”,
IEEE Computer, 24(8), pp. 52-60, 1991.

[I71 Rosenberg, J. “The MONADS Architecture - A Layered
View”, Proceedings of the 4th International Workshop
on Persistent Object Systems, Morgan-Kaufmann, pp.
215-225. 1990.

[18] Rosenberg, J. , Henskens, F. A., Brown, A. L.,
Morrison, R. and Munro, D. “Stability in a Persistent
Store Based on a Large Virtual Memory”, Proceedings of
the International Workshop on Architectural Support
f o r Security and Persistence of Information, ed J.
Rosenberg and J. L. Keedy, Springer-Verlag and British
Computer Society, pp. 229-245, 1990.

[191 Storm, R. E. and Yemini, S. A. “Optimistic Recovery
in Distributed Systems”, ACM Transactions on
Computer Systems, 3(3), pp. 204-226, 1985. [IO] Henskens, F. A., Rosenberg, J. and Hannaford, M. R.

“Stability in a Network of MONADS-PC Computers”,
Proceedings of the International Workshop on [201 Vaughan, F., Basso, T. L., Dearle, A., Marlin, C. and
Computer Architectures to support Security and Barter, C. “Casper: a Cached Architecture Supporting
Persistence of Information, ed J. Rosenberg and J. L. Persistence”, Computing Systems, 5(3), pp. 337-359,
Keedy, Springer-Verlag and British Computer Society, 1992.
pp. 246-256, 1990.

674

