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Abstract 

In a persistent object store, the acts of modifying data 
and reading modified data result in the creation of 
dependencies between the modifying process and the data. 
Dependencies may be represented using sets, and over time 
these may grow to encompass many objects and 
processes. Checkpoint and roll-back operations must 
propagate to all elements in such a set. This paper 
presents a new notation for  representing dependencies, and 
shows that differentiating between the dependencies created 
by modifying data and reading modified data reduces the 
extent of propagation of checkpoint and roll-back 
operations. 

Keywords :  Stability, Dependency, Persistent 
Systems, Fault-tolerant Systems, Checkpoint, Roll-back. 

1 Introduction 
Persistent systems [ 11 provide uniform mechanisms for 

the manipulation of short-term and long-term data. 
Achieving such uniformity requires an abstract store often 
called persistent store [4]. According to [2, 51 such a store 
should appear to be of unbounded size and to be failure- 
free. The failure-free property of such stores is often 
referred to as store stability. 

A Distributed Persistent Store (DPS) provides access to 
a shared network-wide persistent store for users of 
computers connected to a network. The secondary or 
backing storage, which typically occurs on disk, may be 
centralised (eg Casper [20]) or distributed across the 
networked nodes (eg Monads DSM [SI). Implementation 
of a DPS introduces issues not associated with single node 
persistent stores. Of our concern in this paper is the 
appearance of being failure-free (stability). Stability of a 
DPS can be achieved by stepping the store through a 
sequence of global consistent states [lo, 131, requiring the 
implementation of distributed atomic updates. 

From time to time computer systems unexpectedly 
fail, due either to hardware or software faults or loss of 
power. Such failures may result in loss of the contents of 

volatile memory (RAM), while the contents of the non- 
volatile memory typically remain unchanged. As 
persistent stores provide uniform management of objects, 
the transfer of data between volatile and non-volatile 
memory is transparent to the user. At any instant the 
state of the store is represented by the combination of the 
contents of the volatile and non-volatile memories. Since 
the contents of volatile memory are typically lost after 
system failure, a stable persistent store must be able to 
revert after failure to some consistent state described in 
non-volatile memory. 

Techniques which make such reversion possible for 
persistent systems are typically based on regularly 
flushing the volatile system state to non-volatile storage 
(checkpointing or stabilising) and reverting to the most 
recent checkpoint state after failure (roll-back) [lo]. For a 
DPS to be stable there must be at least one global 
consistent and non-volatile recorded state at any instant. It 
is desirable that this recorded state is close to the state at 
the time of failure, thus minimising the loss of 
modifications to the store in the event of roll-back. 

Shadow paging has been used as a mechanism for 
implementing a roll-back recovery technique in single- 
node persistent stores (eg. [4, 81). In the interval between 
checkpoint states two versions are maintained for all 
modified virtual pages; the stable or shadow version, and 
the modified or current version. During a checkpoint 
operation, all pages modified since the last checkpoint are 
flushed to backup store creating new shadow versions, and 
the disk blocks occupied by the previous shadow versions 
are de-allocated [ 181. A checkpoint operation is assumed 
to be atomic and may be initiated as a periodic action, as 
part of orderly system shutdown, or as part of some higher 
level mechanism such as transaction commit. 

During recovery from a failure, or on system restart, 
the system commences operation from the most recent 
stable state. In the case of recovery from a system failure, 
this is equivalent to a roll-back operation and results in 
the loss of modifications achieved since the last 
checkpoint. Reducing this loss may be achieved by 
increasing the frequency of checkpoints; this degrades 
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system performance because processing must be suspended 
for parts of the store undergoing a checkpoint. This 
degradation is particularly relevant if the entire store is 
stabilised as a single operation. In an attempt to reduce 
the impact of checkpoint operations on store useability, 
recent stability schemes based on shadow paging 
checkpoint parts of the store separately from each other 
vol. 

This approach to stability requires consideration of the 
physical and logical dependencies which may be created in 
the interval between checkpoints [20]. Such dependencies 
may require parts of the store to be checkpointed together. 
While the roll-back operation has not been explicitly 
included in this and some subsequent discussion, its 
inclusion may be implied by the reader since checkpoint 
and roll-back operations are effectively inverses of each 
other. 

Shadow paging has been used to provide stability in 
DPSs (eg. Casper [13] and Monads-DSM [8, lo]). In 
these systems consistency of the store is maintained in the 
case of both node and network failure; this is not as 
straightforward as for single-node stores because of the 
possibility that dependencies may involve multiple nodes. 

In the following discussion we refer to a virtual page as 
clean if it is has not been modified since it was last 
checkpointed, otherwise it is called dirty. Objects are 
assumed to be paged entities equivalent to, for instance, 
files or programs in conventional systems. An object 
may also be referred to as clean or dirty; this is with 
respect to the status of the page currently being accessed. 
Thus one process may see an object as clean while 
simultaneously another process may see the same object 
as dirty. The term entity refers to an object or a process 
in this discussion. 

Processes in distributed systems may communicate 
through passing messages or accessing a global shared 
memory [16]. In the message passing model of process 
communication, the state of a process PI, after receiving a 
message from another process P2, depends on the state of 
P2. Likewise, in the shared memory model of process 
communication, the state of a process P1 accessing a dirty 
page modified by another process P2, depends on the state 
of P2. In this paper we concentrate on dependencies in 
shared memory systems, investigating the application of 
entity-based stabilisation using directed graphs to describe 
dependencies between entities. We show that the use of 
directed graphs allows separate description of checkpoint 
and roll-back dependencies, thus improving store 
efficiency. Further aspects of entity dependency including 
two phase checkpoint and roll-back are discussed. 

2 Entity dependency in shared memory 
environments 

Access by multiple processes to data objects typically 
results in inter-dependence between the processes and the 
objects. For example, when a process PI accesses a dirty 
data object D1 previously modified by an other process P2, 
its subsequent behaviour may be affected according to the 
modifications achieved by P2. The states of PI ,  D1, and 
P2 become inter-dependent as a result of the access 
performed by PI. During normal operation on the store, 
sets of such dependent entities may be created. Such sets 
of dependent entities have been termed associations [20]. 
It is important for the logical integrity of the store that 
such dependent entities are checkpointed together. 
Checkpointing an entity belonging to an association 
necessitates the checkpointing of all entities in  the 
association. The roll-back of an entity, likewise, 
necessitates the roll-back of all other entities belonging to 
the same association. Reducing the size of associations1 
improves store performance by curbing the propagation of 
checkpoint and roll-back operations from one entity to 
other dependent entities. 

2.1 Implications of dependencies in single-node 
persistent stores 

Dependency of objects in conventional systems is less 
critical than that in  persistent systems due to the 
separation between management of main memory (RAM) 
and backup memory (file store). A process in a 
conventional system explicitly writes all its permanent 
modifications from memory back to the disk file store. 
This, if accompanied by consideration of shared objects, 
can produce a consistent stable state for the process. 
Whenever a user closes his files, he ensures that the data 
in the files is stable. In the case of a server failure which 
results in file corruption, the user may revert to the most 
recent backup taken by the system operator. After any 
failure users restart their processes, and with the exception 
of higher level software such as data base management 
systems the integrity of data at the object level is not 
critical to correct store operation. 

In persistent systems, however, transparent transfer of 
data between volatile and non-volatile storage and also 
stability of the store is the responsibility of the system 
memory manager. Users in  persistent systems view the 
store as stable and therefore expect all their update 
operations to remain durable. Such a view is achievable 

lSuch reduction must be sensible in terms of cost. Associations 
may be reduced to unit size by checkpointing after every update, 
however this would be as detrimental to system performance as 
allowing associations to grow too large. 
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to some extent through frequent checkpoints, as proposed 
for the Napier and Monads-PC persistent stores [5 ,  181. 

Napier is a single-user persistent system constructed 
above a Unix-based computer. It involves an abstract 
machine (PAM) which provides the abstraction of the 
persistent store and also a programming language (Napier- 
88). Stability of the persistent store is provided through 
regular checkpointing and the implementation of shadow 
paging between subsequent checkpoints [4]. In terms of 
dependency, all entities in the store are assumed to become 
dependent on each other during operation, and therefore the 
whole store is stabilised atomically. In the case of any 
failure the whole store is rolled back to the last checkpoint 
state [4]. 

The Monads-PC is a purpose-built computer which 
supports persistence at the architectural level. The non- 
volatile backup for the persistent store consists of one or 
more volumes (disks), which form the granularity of 
stability [lo]. Volumes are stabilised or rolled back 
without regard to the entities stored on them. Similarly 
to Napier, in  uni-volume Monads-PC computers all 
entities are assumed to be dependent on each other and 
therefore no dependency information is maintained. 
However, in the case of multi-volume Monads computers 
any reference from an entity in one volume to an entity 
resident on another volume may result in dependency 
between the volumes. Thus, to date, dependencies in the 
Monads system have been maintained at the volume level. 

2.2 Implications of dependencies in distributed 
persistent stores 

A considerable body of research [3, 12, 14, 15, 191 has 
been carried out aimed at building recoverable distributed 
systems because of their higher probability of failure 
occurrence. The failure of a node or of the communication 
link (these failures result in  network partitions) in 
distributed systems causes only a part of the system to be 
unavailable. To allow still-alive portions of the store to 
continue operation correctly after such a failure, their state 
should be made consistent with the recovery state of the 
failed (and temporarily inaccessible) portion. 

Constructing a global consistent state in distributed 
systems is not as straightforward as for single-node 
systems. This is because of the logical dependencies 
described above, and the fact that such dependencies may 
traverse nodes. The difficulty is achieving atomicity of 
checkpoint for multiple nodes and in a situation where 
failure of a node or the inter-connecting medium can occur 
at any time. In the following paragraphs we review the 
implications of dependency for Casper and Monads-DSM, 
these being examples of stores implementing different 
distributed store control disciplines. 

Casper employs the centralised server model to provide 
the abstraction of a DPS. It considers the world as a set 
of clients served by a central server which provides access 
to shared objects and maintains the stability and coherency 
of the paged persistent store. Checkpoint operations occur 
at the client level and may be cascaded to other clients. 
Clients which have seen the same dirty data are deemed to 
be dependent on each other and are grouped into dynamic 
sets called associations [20]. Each association is 
accompanied by a set of pages which have been modified 
by at least one member of the association since the last 
checkpoint. A page may belong to at most one such set. 
Whenever a client accesses a modified page, the 
association to which the client belongs is merged with the 
association defining other clients dependent on the page. 
If a client modifies a clean page, the page is added to the 
set of pages accompanying the association to which the 
client belongs. 

When any client belonging to an association initiates a 
stabilise operation, all clients in the association are forced 
to stabilise. Similarly, if any client in an association 
rolls back to its last stable state, all clients in the 
association must roll back. These requirements result in 
consistency of the persistent store. 

The Monads-DSM provides a DPS using a distributed 
server model constructed over a network of Monads-PC 
computers. As described in section 2.1, the granularity of 
stability in Monads-PC computers is the volume. In a 
multi-volume Monads-PC or in the Monads-DSM, it is 
possible to have cross references between volumes. In 
order to ensure consistency, volumes containing cross 
references must be stabilised together. A dependency 
graph maintained at each node is used to describe 
dependencies between volumes. A two-phase commit 
protocol is used to perform a stabilise operation in which 
a volume and all its dependent volumes (according to the 
dependency graph) are stabilised together [lo]. 

The problems with the Monads-DSM approach are not 
only the large granularity of stability (the volume which 
may contain many objects) but also the determination of 
dependency relationships between volumes regardless of 
the kind of access (read or write). Using volumes as the 
granularity of stability leads to the incidence of stabilise 
operations on non-essential data objects in a volume 
together with other objects which must be stabilised for 
consistency reasons. As we shall show, the lack of 
consideration of access type in defining the dependency of 
volumes results in  larger dependency graphs than 
necessary. This larger than necessary dependency graph 
makes the stabilise operation in Monads-DSM inefficient. 
The issue of maintaining dependencies regardless of access 
type is also applicable in the case of Casper. 
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3 More efficient representation of 
dependencies 

As mentioned above, the current methods of managing 
dependencies in DPSs consider dependency as a bilateral 
(undirected) relationship, and therefore reading modified 
data has the same effect as modifying data in terms of 
dependency. We show that different dependencies are 
created by modifying data and by accessing previously 
modified data, and that read operations create unilateral (as 
opposed to bilateral) dependencies. Because read 
operations typically outnumber write operations [7], we 
believe that the cost of cascaded operations will decrease 
dramatically by use of the proposed unilateral 
dependencies. 

Reading from objects and writing to them are the two 
major operations which result in dependency. Other non- 
frequent operations such as create, open, close, and remove 
objects are normally reduced to write operations on the 
red-tape areas of objects or the system-related data. It is 
assumed that objects are paged, and that the unit of data 
transfer between main memory and secondary storage is 
the virtual page. We describe the management of 
dependency in terms of process' access to virtual pages 
comprising objects. 

Without the ability to separately stabilise and roll-back 
entities (such as processes and objects) rather than 
collections of entities (such as volumes), the incidence of 
dependency between such entities may result in cascading 
of these operations to all entities. Therefore, we reduce 
the granularity of stability to the individual entity. 

A process may perform one of the following operations 
on a virtual Dage. r 0 -  

It may read data from an unmodified page, which 
results in no dependency between the reading process 
and the object containing the page. This is because 
the data is stable at the time of the read operation, 
resulting in no change in the stability of the reading 
process. 
It may read a modified page of an object, which 
results in a unilateral dependency between the reading 
process and the object containing the page (ie the 
object is not dependent on the process). This is 
because the data was unstable at the time of the read 
operation, and the unstable data caused the process to 
become unstable (if it was not already). 
It may modify a page of an object, which results in a 
mutual dependency of the modifying process and the 
modified object. This is because the process caused 
the (possibly stable) data to become unstable. 

Directed Dependency Graphs (DDGs). Entities form 
vertices and dependencies between them form edges of 
DDGs. Each edge either describes a dependency between a 
process and an object or vice versa. Objects (processes) 
may depend on each other only through a vertex 
representing a process (object). We use + in order to 
specify the causal dependency between two entities. By 
E1+E2, we mean that El depends (directly or indirectly) 
on E2. Such relation (+) is transitive, but not symmetric 
ie if El depends on E2 ( E 1 j E 2 )  then E2 does not 
necessarily depend on El. However, the right hand side of 
a + relation may depend on the left hand side for one of 
the following reasons: 

through transitivity (a cycle in the directed dependency 
graph), or 
when the left hand side is a process which writes to an 
object. 

In the case of a write operation which leads to a pair of 
dependencies (with opposite directions), instead of using 
two unilateral edges (El+E2 and E2+E1), we use the 
notation EleE2.  

DDGs are constructed gradually as processes access 
objects. Initially the dependency graph for an entity 
contains the entity itself as the root and the only vertex. 
In terms of the possible operations performed by a process 
on an object, the graph grows according to the following 
criteria. 

When a process PI reads a modified page of an object 
0 1 ,  the P1 + 0 1  edge is inserted into the graph. 
When a process PI modifies a page of the object 0 1 ,  
either the PI t) 01 or 01 t) PI edge is inserted into 
the graph. 
When a process in one graph reads a modified page or 
modifies a page of an object in another graph, the two 
graphs are merged to create a single larger graph. 
A graph shrinks when a collection of dependent 
entities is stabilised or revert to their last stable state. 

At any given time each entity belongs to one and only 
one dependency graph. To find the entities dependent on 
an entity, it is sufficient to find the location of the entity 
in its graph and then traverse the directed graph from the 
entity. Dependencies between local and remote entities are 
also managed by DDGs. Such dependencies result in 
distributed DDGs encompassing entities resident on 
multiple nodes. 

4 Implication of DDGs on checkpoint 
and roll-back operations 

Dependency graphs are used to identify entities to 
which a stabilise or roll-back operation should cascade. 

Directed graphs may be used to represent directed 
dependencies between entities. We refer to such graphs as 

However, the path traversed for cascading roll-back may be 
different from that for cascading checkpoint operations. 

668 



Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995 

We use a single dependency graph and then apply separate 
stabilise and roll-back algorithms to achieve the required 
operation, two more symbols are introduced which specify 
the dependency between two entities in  terms of 
stabilisation or roll-back. By El 4 E2, we mean that 
when El stabilises, E2 also should be stabilised and 
therefore El depends on E2 in terms of stability. 
Likewise, El 5 E2 means that El depends on E2 in 
terms of roll-back. Figure 1 shows the relationship 
between the edges forming a dependency graph and their 
meanings in  checkpoint and roll-back graphs. By 
convention, we are able to use a single dependency graph 
to indicate separate stability and roll-back relationships. 

t) 2- and 2, -5 and P 
Figure 1 The relationship between Dependency Graph, 

Stabilising Graph, and Roll-back Graph. 

To clarify the distinction between the implication of 
directed dependency on stabilise and roll-back operations, 
consider a scenario in which a process PI  reads a modified 
page of the object 01. Until commencement of the next 
stabilise operation for process PI, all subsequent actions 
taken by P1 are unstable because they may depend on the 
modified 0 1  data. During this period of instability, either 
of 01 or P1 may be alternately stabilised or rolled back. 
1) If 01 is checkpointed, P1 is not required to be 

checkpointed. The worst case is that after 01 is 
checkpointed, P1 rolls back to its last stable state. 
This results in no inconsistency and P1 may read the 
stable data from 0 1  again without problems. 

2) If P1 is checkpointed, 0 1  must also be checkpointed. 
Otherwise, in the case of the roll-back of 0 1  there is 
an inconsistent state in which orphan (no longer 
existent) data has been read by P1 and which may have 
affected its subsequent behaviour. 

3) If 01 rolls back, P1 has to roll-back because the roll- 
back results in PI having read orphan data. 

4) If P1 rolls back, 01 does not have to roll-back because 
PI,  after reversion, can simply redo the read operation. 

4.1 Stability and roll-back of dependent entities 
Checkpointing (rolling-back) an entity requires the 

atomic checkpoint (roll-back) of the entity itself, all of its 
dependents, and the system-related data structures. The 
effect of using DDGs on the propagation of checkpoint 

and roll-back is demonstrated in  figure 2. Using the 
method of associations and dependency graphs which have 
been used in Casper and Monads-DSM, all entities would 
be checkpointed (rolled back) as a result of the checkpoint 
(roll-back) of any entity in the graph. Figure 2(a) shows a 
DDG formed according to the cross-access of three 
processes and four objects according to the rules described 
in section 3. Shaded vertices depict entities with unstable 
states and non-shaded vertices depict entities with stable 
states. Figure 2(b) shows the effect of stabilising PI;  this 
operation propagates only to 0 1  and 02. Figure 2(c) 
shows the effect of rolling back P3 which only propagates 
to 0 4 .  

pJp 
@ 04 U2 

(b) (C) 

Figure 2 a) A sample directed dependency graph. b) 
The effect of checkpointing PI. c) The effect of the roll- 

back of P3. 

@ 

5 Achievement of stability using DDGs 
The application of DDGs to provide a stable DPS 

requires the following facilities: 
1) The system kernel must support the detection of 

operations which create inter-entity dependencies. 
2) Dependency graphs must be independent in terms of 

checkpoint and roll-back operations. Checkpoint 
(roll-back) of an entity belonging to a DDG must not 
lead to checkpoint (roll-back) in any other DDG. 

3) Checkpoint operations must be atomic, and must 
ensure the existence of at least one global consistent 
stable state. For a distributed store, this can be 
achieved through the application of a two-phase 
protocol. 

5.1 Kernel support for dependency detection 
As implied in section 3, processes cannot become 

directly dependent on other processes. Objects also cannot 
be directly dependent on other objects. 
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To support the construction of DDGs the operating 
system kernel for each node must [ I l l  maintain 
information describing: 
(1) Which virtual pages (resident in main memory or not) 

have been modified since the objects containing the 
pages were checkpointed. 

(2) Which modified virtual pages have been accessed in 
this time-slice by the currently executing process. 

(3) Which virtual pages have been modified in this time- 
slice by the currently executing process. 

Detection of whether a non-resident page is modified 
may be achieved by recording which virtual pages have 
been modified since the last checkpoint. When handling a 
page fault, the kernel checks if the page (VI) has been 
previously modified, and if so it is mapped into main 
memory as modifiedhead-only and a dependency is 
recorded. Otherwise, it is mapped in  as read-only. If the 
executing process attempts to write on the page an 
exception condition is created; the kernel grants write 
access after modifying the corresponding DDG. 

In a multi-tasking system a normal process-switch may 
subsequently result in the activation of another process 
P2, which may then access VI .  This access must be 
detected by the stability mechanism because it may cause 
modification of the dependency graph information. It is 
not sufficient to rely on access fault management to detect 
the access, however, because the page is currently in main 
memory in writeable form; in short the access would not 
cause an access fault. To detect such accesses and thus 
permit dependency information to be updated, the kernel 
(or the architecture) must support identification of 
modified memory pages inherited by the next process. 
TLB-based architectures support this facility at the 
hardware level [20]. Architectures such as Monads [17], 
however, which do not provide this facility, must emulate 
it at the kernel level to support the DDG scheme. 

5.2 Critical entities in DDGs 
Each normal entity belongs to one and only one DDG. 

Thus DDGs are autonomous in terms of stabilisation ie 
checkpointing the entities belonging to a DDG does not 
result in checkpointing of entities belonging to another 
DDG. However, there are special system entities which 
logically belong to more than one DDG. We discuss such 
entities in this section. 

The kernel in each node can be considered as an object 
including data structures used in the node management. 
Each kernel function typically results in modifications to 
these data structures, making the current user process 
dependent on the kernel and vice versa. This recursively 
results in dependency between all entities and the kernels. 

For simplicity we will refer to each node kernel as a 
single entity which belongs to all DDGs on that node. 

Due to the lack of a one-to-one correspondence between 
virtual address space and physical disks address space2, 
object identifiers must be mapped into their physical 
addresses. We assume that a mapping table exists per disk 
to perform such mapping for all objects on the disk. We 
refer to this mapping table as the disk directory and 
allocate a special object with well-known identifier per 
disk (root object) which contains all the information 
required for management of the disk (including the disk 
directory and disk free-list). Each access to objects located 
on a disk requires access to and possibly modification of 
the root object. For example, any disk page allocation 
requires the modification of the disk free-list. 

If shadow paging is the method of stability, each 
attempt to modify a 'clean' page results in dependency 
between the object containing the page and the root 
object. Thus each modified object necessarily depends on 
the root object of its storage disk and vice versa. 
Therefore, each network-wide DDG may contain one or 
more kernel entities and also one or more disk root 
objects. 

Disk root objects and kernel entities are critical 
entities; their inclusion in DDGs can act as a focus to 
cause cascade of stabilise operations through whole the 
distributed store if they are considered similarly to the 
other normal entities. Accordingly we do not consider 
critical entities as normal entities and do not include them 
in DDGs. They are considered as permanent entities of 
each dependency graph and are restricted in terms of the 
propagation of operations through them; the dependencies 
between them and DDGs are referred to as implicit 
dependencies. In fact, critical entities act as obstacles to 
the propagation of checkpoint and roll-back operations. 

Figure 3(a) shows the system state in a node with three 
dependency graphs spread over two disks D1 and D2. All 
dependency graphs on the node depend on the kernel entity 
and all dependency graphs with entities belonging to a 
disk depend on the disk root object. We refer to such 
dependencies as strong dependencies. DDGs on a node 
strongly depend on the node critical entities. Figure 3(b) 
shows individual views of each dependency graph in terms 
of critical entities. The root object is assumed to have a 
virtual instance per dependency graph, helping us to 
improve our stabilisation protocol. We must however, 
somehow stabilise the root object to guarantee the 

2Note that even in computer systems which provide single-level 
stores (virtual stores as long as their disk address space), mapping is 
typically required. This is due to the gradual allocation of disk blocks 
to virtual pages. 
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them are checkpointed. Otherwise, for instance, the 
occurrence of a disk crash while a checkpoint is in 
progress may result in an inconsistent system state. 

To provide atomicity, checkpoint of a DDG is achieved 
through a two phase protocol. The most important issue 
in such a protocol is the possibility of reversion to the 
most recent stable state for each participant which has 
failed to achieve its checkpoint or become inaccessible due 
to communication failure. As described in the next 
section, it is important that cycles in a dependency graph 
do not cause dead-locks during checkpoint operations. A 
tagging pre-phase is used to avoid such dead-locks, 
followed by a two phase checkpoint. The protocol 
guarantees atomicity of operations with the possibility of 
roll-back operation as soon as a participating node detects 
the failure (inaccessibility) of another node involved in the 
operation. 
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Figure 3 (a) Dependency of DDGs on critical entities. 
(b) Critical entities act as obstacles in operation 

propagation. 

5.3 Achievement of atomic checkpoint operation 
Checkpoint operations advance the stable system state 

and release disk blocks occupied by the previous stable 
state. For dependent entities distributed over multiple 
nodes it is crucial, for the sake of consistency, that the 
effects of a checkpoint operation appear to be atomic. 
This means that either all dependent entities are 
checkpointed resulting in a new stable state, or none of 

Cyclic dependency graphs: As mentioned above, the 
root object in each disk depends on all modified objects 
resident on the disk and vice versa. Checkpoint of each 
modified object necessitates the stability of its 
corresponding root object. Furthermore checkpointing an 
object requires modification to the root object. If the root 
object was checkpointed when further dependent entities 
belonging to the same disk existed in the current 
dependency graph, the root object would have to be 
checkpointed more than once during the single atomic 
operation. Multiple checkpoints of the root object in a 
single atomic operation make it impossible to revert to 
the most recent state if failures occur during the 
checkpoint. This is because of the disappearance of the 
stable states older than the last one during the achievement 
of the disk root object checkpoint. To prevent such 
inconsistencies and also to improve the efficiency of 
checkpoint operation, all entities on a disk belonging to 
the same dependency graph form a group. Members of 
such a group are checkpointed together followed by a 
single checkpoint of their corresponding disk root object. 
The need for a tagging pre-phase is demonstrated by the 
following example which assumes no tagging pre-phase, 
and nodes each supporting a single disk. 

Consider the checkpoint of 0 1  1 in a dependency graph 
distributed over nodes N I ,  N2, and N3 in figure 4. 
Starting from 0 1  1 and checkpointing entities during 
traversal of the graph, N2 becomes aware that 0 2 1  belongs 
to the same graph as 011 when it is informed to 
checkpoint its part of the graph. N2 checkpoints 0 2 1  as 
well as its corresponding disk root object (note that 
according to the current knowledge of N2, no other entity 
residing on the same disk as 0 2 1  belongs to the same 
dependency graph), and sends a message to N3 requesting 
the checkpoint of P31. While N2 waits for the completion 
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of the checkpoint in N3, it will receive a request from N3 
requesting the checkpoint of 0 2 2 .  As discussed above, N2 
can not checkpoint 0 2 2  while the checkpoint of 0 2 1  has 
not completed or aborted. N3 cannot respond to the initial 
request from N2 until it receives a response to its request 
of N2. This scenario results in either roll-back (due to the 
non-response between N2 and N3) or in  a deadlock 
situation. 

The tagging pre-phase prevents such a deadlock 
situation. During the pre-phase, the DDG is traversed and 
an identical tag is attached to all entities belonging to the 
same DDG. This allows the checkpoint algorithm to 
properly group all entities belonging to the same disk. 

Figure 4 Entities on the same disk which indirectly 
depend on each other. 

Two Phase Checkpoint Using DDGs: In order to 
provide atomicity of a network-wide checkpoint, it is 
achieved in two phases, flush and commit. The flush 
phase is initiated after completion of the tag pre-phase in 
which the entire DDG is traversed and the same 
Dependency Graph Number (DGN)3 is associated with 
each entity. All page flushes and root object 
modifications are achieved in this phase but remain non- 
completed (by advancing to the new state of the disk root 
objects) until commencement of the commit phase. The 
first phase is started by the checkpoint initiator node with 
results as described below. 

First, local entities with the same DGN are classified 
in groups per disk according to the pre-phase tags. Then 
entity flushing is achieved for all such groups. For each 
group, this includes flushing of all group members 
followed by flushing of the disk root object. Flushing of 
an individual entity consists of writing all its modified 
pages currently held in main memory back to disk and 
modifying the disk root object such that the object appears 
clean. Flushing of the disk root object must also include 
declaration of itself as clean. During the period after 
flushing the root object and before the commitment of the 
checkpoint, the root object has an uncertain state and any 

3We also refer to DGN as checkpoint-id. 

access which results in the modification of the root object 
is prohibited. 

In parallel a 'flush' message is sent to each node which 
stores entities belonging to the current DDG requesting 
them to perform the flush phase for all entities with the 
same DGN (this occurs recursively to encompass all 
remote entities stored on remote nodes). The initiator 
(coordinator) then waits for participants' replies. 

On receipt of the 'flush' message, each participant 
achieves the flushing phase in the same way as the 
coordinator. The node may propagate the operation to 
other nodes. This may result in the receipt of multiple 
checkpoint requests for the same DDG by a node, due to 
the possible existence of cycles in  the graph. In such 
cases only the first message is processed and later 
messages are acknowledged. If a participant propagates its 
received checkpoint request to other nodes, it must wait 
for their responses before itself appropriately replying to 
the checkpoint request. 

Upon receipt of a completion message, each node 
checks if all successors have replied and if so, it either 
0 communicates the completion of its 'flush' to its 

predecessor if it is not the coordinator, or 
initiates the commit phase if it is the coordinator. 

If a node detects the inaccessibility of its successor in the 
checkpoint propagation graph (for instance through time- 
out or guardian techniques), it autonomously initiates an 
abort of the checkpoint, commencing the second phase. 
This is discussed in more detail in section 6. 

In the case of completion of the flush phase, the 
coordinator decides to commit and propagates this decision 
through the graph. The commit phase is also achieved per 
disk, and achieves atomic transfer from the previous stable 
state to the current flushed state. This is achieved by 
atomically updating the pointers to each disk root object 
so that these pointers now reference the new root objects 
created by the checkpoint. It is crucial to somehow 
guarantee the existence of at least one stable state despite 
the possible occurrence of failures during the transition 
from the previous stable state to the next one. 

The operation which completes a disk checkpoint is 
similar to the commit operation for database updates. We 
use Challis' algorithm [6] to achieve the atomic update of 
the pointer to each disk root object. Two pointers are 
allocated to each disk to represent two subsequent stable 
states of the system. If a failure (crash) occurs while a 
pointer is being stored as the final stage of a checkpoint 
operation then the pointer is potentially incorrect. After 
recovery from the crash, the system is able to identify the 
consistent pointer and therefore the most recent stable 
state of the disk. 

We add to Challis' algorithm in  order to fulfil the 
requirements of two phase checkpoint atomicity. We 
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assume that the store is spread over a multi-node system 
and each node is capable of mounting more than one disk. 
The new algorithm detects: 
0 the most up-to-date correct root object pointer for each 

disk, 
0 failure of a node after achieving the first phase of a 

checkpoint operation for one of its local disks, and 
failure of a node after achieving the second phase of a 
checkpoint operation for one of its local disks and 
before all local disks containing entities in  the 
dependency graph have completed their second phase. 

A message protocol allows a recovering node to decide 
which disk root object pointer to use if an incomplete 
checkpoint is detected during failure recovery. According 
to this protocol the node either completes the second 
phase of the incomplete checkpoint or performs a roll- 
back operation. 

6 Implication of using DDGs on 
checkpoint abort 

As soon as a node detects inaccessibility of its 
successor in the checkpoint propagation graph, it assumes 
the receipt of an abort or roll-back request through its edge 
to the inaccessible node. Whereas systems using 
associations to describe dependent entities require such an 
abort to be propagated to all entities in the association, 
systems using DDGs allow some flushed entities to 
commit their checkpoint while other entities revert to 
their previous stable states. As shown in the following 
example, the use of DDGs thus results in less loss of data 
modifications after failure. 

Consider the scenario depicted in  figure 5 .  The process 
P11 on node NI initiated a checkpoint which propagated to 
01 1, and hence to N2 and through N2, to N3 and N4. 
Suppose that N2 detects inaccessibility of N3 and therefore 
acts as if it has received an abort request through the edge 
between P21 and 0 3 1 .  Although node N4 remains 
accessible, 0 4 1  and P41 are unaffected by the abort because 
of the nature of the directed edge linking P21 and 041.  
The entities resident on node N4 can thus continue to 
commit their checkpoint. Because of the nature of the 
edges linking the involved entities resident on nodes N I  
and N2, however, the roll-back operation cascades to those 
entities. 

Conclusion 
In this paper we demonstrated shortcomings of the 

current techniques used to describe dependency 
relationships between processes and objects i n  a 
distributed persistent store. In particular we showed that 
the cascade effect of stabilise operations resulted in larger 
stabilise operations than absolutely necessary. We also 
showed that the cascade effect of roll-back operations could 
result in unnecessary loss of store modification. 

We presented an alternate method for describing entity 
inter-relationships. This alternate representation uses 
directed graphs. The directed edges in such graphs allows 
different interpretation of the graph during stabilise and 
roll-back operations. We showed that, because of the 
extra flexibility afforded by the DDG representation, it is 
possible to significantly reduce the cascade effects of store 
stability operations. In particular, checkpoint operations 
are improved in terms of efficiency, and the extent of roll- 
back operations is reduced. This is a significant 
achievement, because only those modifications which it is 
absolutely necessary to reverse are lost as a result of roll- 
back operations. 

The techniques described in this paper have been 
evaluated by simulation and shown to result in significant 
stability-related performance improvements. Subsequently 
a new version of the Monads architecture which 
incorporates hardware support for the construction of 
directed dependency graphs has been designed and is 
currently being implemented [9]. 
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